package Font::TTF::Silf;
=head1 NAME
Font::TTF::Silf - The main Graphite table
=head1 DESCRIPTION
The Silf table holds the core of the Graphite rules for a font. A Silf table has
potentially multiple silf subtables, although there is usually only one. Within a silf subtable,
there are a number of passes which contain the actual finite state machines to match rules
and the constraint and action code to be executed when a rule matches.
=head1 INSTANCE VARIABLES
=over 4
=item Version
Silf table format version
=item Compiler
Lowest compiler version necessary to fully support the semantics expressed in this
Graphite description
=item SILF
An array of Silf subtables
=over 4
=item maxGlyphID
The maximum glyph id referenced including pseudo and non glyphs
=item Ascent
Extra ascent to be added to the font ascent.
=item Descent
Extra descent to be added to the font descent. Both values are assumed to be
positive for a descender below the base line.
=item substPass
Pass index into PASS of the first substitution pass.
=item posPass
Pass index into PASS of the first positioning pass.
=item justPass
Pass index into PASS of the first justification pass.
=item bidiPass
Pass index of the pass before which the bidirectional processing pass will be executed.
0xFF indicates that there is no bidi pass to be executed.
=item Flags
A bitfield of flags:
0 - Indicates there are line end contextual rules in one of the passes
=item maxPreContext
Maximum length of a context preceding a cross line boundary contextualisation.
=item maxPostContext
Maximum length of a context following a cross line boundary contextualsation.
=item attrPseudo
Glyph attribute for the actual glyph id associated with a pseudo glyph.
=item attrBreakWeight
Glyph attribute number of the attribute holding the default breakweight associated with a glyph.
=item attrDirectionality
Glyph attribute number of the attribute holding the default directionality value associated with a glyph.
=item JUST
The may be a number of justification levels each with their own property values.
This points to an array of hashes, one for each justification level.
=over 4
=item attrStretch
Glyph attribute number for the amount of stretch allowed before this glyph.
=item attrShrink
Glyph attribute number for the amount of shrink allowed before this glyph.
=item attrStep
Glyph attribute number specifying the minimum granularity of actual spacing associated with this glyph at this level.
=item attrWeight
Glyph attribute number giving the weight associated with spreading space across a run of glyphs.
=item runto
Which level starts the next stage.
=back
=item numLigComp
Number of initial glyph attributes that represent ligature components
=item numUserAttr
Number of user defined slot attributes referenced. Tells the engine how much space to
allocate to a slot for user attributes.
=item maxCompPerLig
Maximum number of components per ligature.
=item direction
Supported directions for this writing system
=item CRIT_FEATURE
Array of critical features.
=item scripts
Array of script tags that indicate which set of GDL rules to execute if there is more than one in a font.
=item lbGID
Glyph ID of the linebreak pseudo glyph.
=item pseudos
Hash of Unicode values to pseduo glyph ids.
=item classes
This is an array of classes, each of which is an array of glyph ids in class order.
=item PASS
The details of rules and actions are stored in passes. This value is an array of pass subobjects one for each pass.
=over 4
=item flags
This is a bitfield:
0 - If true, this pass makes no change to the slot stream considered as a sequence of glyph ids.
Only slot attributes are expected to change (for example during positioning).
=item maxRuleLoop
How many times the engine will allow rules to be tested and run without the engine advancing through the
input slot stream.
=item maxRuleContext
Number of slots of input needed to run this pass.
=item maxBackup
Number of slots by which the following pass needs to trail this pass (i.e. the maximum this pass is allowed to back up).
=item numRules
Number of action code blocks, and so uncompressed rules, in this pass.
=item numRows
Number of rows in the finite state machine.
=item numTransitional
Number of rows in the finite state machine that are not final states. This specifies the number of rows in the fsm
element.
=item numSuccess
Number of success states. A success state may also be a transitional state.
=item numColumns
Number of columns in the finite state machine.
=item colmap
A hash, indexed by glyphid, that gives the fsm column number associated with that glyphid. If not present, then
the glyphid is not part of the fsm and will finish fsm processing if it occurs.
=item rulemap
An array of arrays, one for each success state. Each array holds a list of rule numbers associated with that state.
=item minRulePreContext
Minimum number of items in a rule's precontext.
=item maxRulePreContext
The maximum number of items in any rule's precontext.
=item startStates
Array of starting state numbers dependeing on the length of actual precontext.
There are maxRulePreContext - minRulePreContext + 1 of these.
=item ruleSortKeys
An array of sort keys one for each rule giving the length of the rule including its precontext.
=item rulePreContexts
An array of precontext lengths for each rule.
=item fsm
A two dimensional array such that $p->{'fsm'}[$row][$col] gives the row of the next node to try in the fsm.
=item passConstraintLen
Length in bytes of the passConstraint code.
=item passConstraintCode
A byte string holding the pass constraint code.
=item constraintCode
An array of byte strings holding the constraint code for each rule.
=item actionCode
An array of byte strings holding the action code for each rule.
=back
=back
=back
=cut
use Font::TTF::Table;
use Font::TTF::Utils;
use strict;
use vars qw(@ISA);
@ISA = qw(Font::TTF::Table);
=head2 @opcodes
Each array holds the name of the opcode, the number of operand bytes and a string describing the operands.
The characters in the string have the following meaning:
c - lsb of class id
C - msb of class id
f - feature index
g - lsb of glyph attribute id
G - msb of glyph attribute id
l - lsb of a 32-bit extension to a 16-bit number
L - msb of a 32-bit number
m - glyph metric id
n - lsb of a number
N - msb of a 16-bit number
o - offset (jump)
s - slot reference
S - slot attribute id
v - variable number of following arguments
=cut
our @opcodes = ( ["nop", 0, ""], ["push_byte", 1, "n"], ["push_byte_u", 1, "n"], ["push_short", 2, "Nn"],
["push_short_u", 2, "Nn"], ["push_long", 4, "LlNn"], ["add", 0, ""], ["sub", 0, ""],
["mul", 0, ""], ["div", 0, ""], ["min", 0, ""], ["max", 0, ""],
["neg", 0, ""], ["trunc8", 0, ""], ["trunc16", 0, ""], ["cond", 0, ""],
["and", 0, ""], ["or", 0, ""], ["not", 0, ""], ["equal", 0, ""], # 16
["not_eq", 0, ""], ["less", 0, ""], ["gtr", 0, ""], ["less_eq", 0, ""],
["gtr_eq", 0, ""], ["next", 0, ""], ["next_n", 1, "n"], ["copy_next", 0, ""],
["put_glyph_8bit_obs", 1, "c"], ["put_subs_8bit_obs", 3, "scc"], ["put_copy", 1, "s"], ["insert", 0, ""],
["delete", 0, ""], ["assoc", -1, "v"], ["cntxt_item", 2, "so"], ["attr_set", 1, "S"], # 32
["attr_add", 1, "S"], ["attr_sub", 1, "S"], ["attr_set_slot", 1, "S"], ["iattr_set_slot", 2, "Sn"],
["push_slot_attr", 2, "Ss"], ["push_glyph_attr_obs", 2, "gs"], ["push_glyph_metric", 3, "msn"], ["push_feat", 2, "fs"],
["push_att_to_gattr_obs", 2, "gs"], ["push_att_to_glyph_metric", 3, "msn"], ["push_islot_attr", 3, "Ssn"], ["push_iglyph_attr", 3, "gsn"],
["pop_ret", 0, ""], ["ret_zero", 0, ""], ["ret_true", 0, ""], ["iattr_set", 2, "Sn"], # 48
["iattr_add", 2, "Sn"], ["iattr_sub", 2, "Sn"], ["push_proc_state", 1, "n"], ["push_version", 0, ""],
["put_subs", 5, "sCcCc"], ["put_subs2", 4, "cscc"], ["put_subs3", 7, "scscscc"], ["put_glyph", 2, "Cc"],
["push_glyph_attr", 3, "Ggs"], ["push_att_to_glyph_attr", 3, "Ggs"], ["bitand", 0, ""], ["bitor", 0, ""],
["bitnot", 0, ""], ["setbits", 4, "NnNn"], ["setfeat", 2, "fs"] ); # 64
my ($i) = 0;
our %opnames = map {$_->[0] => $i++} @opcodes;
=head2 read
Reads the Silf table into the internal data structure
=cut
sub read
{
my ($self) = @_;
$self->SUPER::read or return $self;
my ($dat, $d);
my ($fh) = $self->{' INFILE'};
my ($moff) = $self->{' OFFSET'};
my ($numsilf, @silfo);
$fh->read($dat, 4);
($self->{'Version'}) = TTF_Unpack("v", $dat);
if ($self->{'Version'} >= 3)
{
$fh->read($dat, 4);
($self->{'Compiler'}) = TTF_Unpack("v", $dat);
}
$fh->read($dat, 4);
($numsilf) = TTF_Unpack("S", $dat);
$fh->read($dat, $numsilf * 4);
foreach my $i (0 .. $numsilf - 1)
{ push (@silfo, TTF_Unpack("L", substr($dat, $i * 4, 4))); }
foreach my $sili (0 .. $numsilf - 1)
{
my ($silf) = {};
my (@passo, @classo, $classbase, $numJust, $numCritFeatures, $numScript, $numPasses, $numPseudo, $i);
push (@{$self->{'SILF'}}, $silf);
$fh->seek($moff + $silfo[$sili], 0);
if ($self->{'Version'} >= 3)
{
$fh->read($dat, 8);
($silf->{'Version'}) = TTF_Unpack("v", $dat);
}
$fh->read($dat, 20);
($silf->{'maxGlyphID'}, $silf->{'Ascent'}, $silf->{'Descent'},
$numPasses, $silf->{'substPass'}, $silf->{'posPass'}, $silf->{'justPass'}, $silf->{'bidiPass'},
$silf->{'Flags'}, $silf->{'maxPreContext'}, $silf->{'maxPostContext'}, $silf->{'attrPseudo'},
$silf->{'attrBreakWeight'}, $silf->{'attrDirectionality'}, $silf->{'attrMirror'}, $silf->{'passBits'}, $numJust) =
TTF_Unpack("SssCCCCCCCCCCCCCC", $dat);
if ($numJust)
{
foreach my $j (0 .. $silf->{'numJust'} - 1)
{
my ($just) = {};
push (@{$silf->{'JUST'}}, $just);
$fh->read($dat, 8);
($just->{'attrStretch'}, $just->{'attrShrink'}, $just->{'attrStep'}, $just->{'attrWeight'},
$just->{'runto'}) = TTF_Unpack("CCCCC", $dat);
}
}
$fh->read($dat, 10);
($silf->{'numLigComp'}, $silf->{'numUserAttr'}, $silf->{'maxCompPerLig'}, $silf->{'direction'},
$silf->{'attCollisions'}, $d, $d, $d, $numCritFeatures) = TTF_Unpack("SCCCCCCCC", $dat);
if ($numCritFeatures)
{
$fh->read($dat, $numCritFeatures * 2);
$silf->{'CRIT_FEATURE'} = [TTF_Unpack("S$numCritFeatures", $dat)];
}
$fh->read($dat, 2);
($d, $numScript) = TTF_Unpack("CC", $dat);
if ($numScript)
{
$fh->read($dat, $numScript * 4);
foreach (0 .. $numScript - 1)
{ push (@{$silf->{'scripts'}}, unpack('a4', substr($dat, $_ * 4, 4))); }
}
$fh->read($dat, 2);
($silf->{'lbGID'}) = TTF_Unpack("S", $dat);
$fh->read($dat, $numPasses * 4 + 4);
@passo = unpack("N*", $dat);
$fh->read($dat, 8);
($numPseudo) = TTF_Unpack("S", $dat);
if ($numPseudo)
{
$fh->read($dat, $numPseudo * 6);
foreach (0 .. $numPseudo - 1)
{
my ($uni, $gid) = TTF_Unpack("LS", substr($dat, $_ * 6, 6));
$silf->{'pseudos'}{$uni} = $gid;
}
}
$classbase = $fh->tell();
$fh->read($dat, 4);
my ($numClasses, $numLinearClasses) = TTF_Unpack("SS", $dat);
$silf->{'numLinearClasses'} = $numLinearClasses;
$fh->read($dat, ($numClasses + 1) * ($self->{'Version'} >= 4 ? 4 : 2));
@classo = unpack($self->{'Version'} >= 4 ? "N*" : "n*", $dat);
$fh->read($dat, $classo[-1] - $classo[0]);
for ($i = 0; $i < $numLinearClasses; $i++)
{
push (@{$silf->{'classes'}}, [unpack("n*", substr($dat, $classo[$i] - $classo[0],
$classo[$i+1] - $classo[$i]))])
}
for ($i = $numLinearClasses; $i < $numClasses; $i++)
{
my (@res);
my (@c) = unpack("n*", substr($dat, $classo[$i] - $classo[0] + 8, $classo[$i+1] - $classo[$i] - 8));
for (my $j = 0; $j < @c; $j += 2)
{ $res[$c[$j+1]] = $c[$j]; }
push (@{$silf->{'classes'}}, \@res);
}
foreach (0 .. $numPasses - 1)
{ $self->read_pass($fh, $passo[$_], $moff + $silfo[$sili], $silf, $_); }
}
return $self;
}
sub chopcode
{
my ($dest, $dat, $offsets, $isconstraint) = @_;
my ($last) = $offsets->[-1];
my ($i);
for ($i = $#{$offsets} - 1; $i >= 0; $i--)
{
if ((!$isconstraint || $offsets->[$i]) && $offsets->[$i] != $last)
{
unshift(@{$dest}, substr($dat, $offsets->[$i], $last - $offsets->[$i]));
$last = $offsets->[$i];
}
else
{ unshift(@{$dest}, ""); }
}
}
sub read_pass
{
my ($self, $fh, $offset, $base, $silf, $id) = @_;
my ($pass) = {'id' => $id};
my ($d, $dat, $i, @orulemap, @oconstraints, @oactions, $numRanges);
$fh->seek($offset + $base, 0);
# printf "pass base = %04X\n", $offset;
push (@{$silf->{'PASS'}}, $pass);
$fh->read($dat, 40);
($pass->{'flags'}, $pass->{'maxRuleLoop'}, $pass->{'maxRuleContext'}, $pass->{'maxBackup'},
$pass->{'numRules'}, $d, $d, $d, $d, $d, $pass->{'numRows'}, $pass->{'numTransitional'},
$pass->{'numSuccess'}, $pass->{'numColumns'}, $numRanges) =
TTF_Unpack("CCCCSSLLLLSSSSS", $dat);
$fh->read($dat, $numRanges * 6);
foreach $i (0 .. $numRanges - 1)
{
my ($first, $last, $col) = TTF_Unpack('SSS', substr($dat, $i * 6, 6));
foreach ($first .. $last)
{ $pass->{'colmap'}{$_} = $col; }
}
$fh->read($dat, $pass->{'numSuccess'} * 2 + 2);
@orulemap = unpack("n*", $dat);
$fh->read($dat, $orulemap[-1] * 2);
foreach (0 .. $pass->{'numSuccess'} - 1)
{ push (@{$pass->{'rulemap'}}, [unpack("n*", substr($dat, $orulemap[$_] * 2, ($orulemap[$_+1] - $orulemap[$_]) * 2))]); }
$fh->read($dat, 2);
($pass->{'minRulePreContext'}, $pass->{'maxRulePreContext'}) = TTF_Unpack("CC", $dat);
$fh->read($dat, ($pass->{'maxRulePreContext'} - $pass->{'minRulePreContext'} + 1) * 2);
$pass->{'startStates'} = [unpack('n*', $dat)];
$fh->read($dat, $pass->{'numRules'} * 2);
$pass->{'ruleSortKeys'} = [unpack('n*', $dat)];
$fh->read($dat, $pass->{'numRules'});
$pass->{'rulePreContexts'} = [unpack('C*', $dat)];
$fh->read($dat, 3);
($pass->{'collisionThreshold'}, $pass->{'passConstraintLen'}) = TTF_Unpack("CS", $dat);
$fh->read($dat, ($pass->{'numRules'} + 1) * 2);
@oconstraints = unpack('n*', $dat);
$fh->read($dat, ($pass->{'numRules'} + 1) * 2);
@oactions = unpack('n*', $dat);
foreach (0 .. $pass->{'numTransitional'} - 1)
{
$fh->read($dat, $pass->{'numColumns'} * 2);
push (@{$pass->{'fsm'}}, [unpack('n*', $dat)]);
}
$fh->read($dat, 1);
if ($pass->{'passConstraintLen'})
{ $fh->read($pass->{'passConstraintCode'}, $pass->{'passConstraintLen'}); }
$fh->read($dat, $oconstraints[-1]);
$pass->{'constraintCode'} = [];
chopcode($pass->{'constraintCode'}, $dat, \@oconstraints, 1);
$fh->read($dat, $oactions[-1]);
$pass->{'actionCode'} = [];
chopcode($pass->{'actionCode'}, $dat, \@oactions, 0);
return $pass;
}
sub chopranges
{
my ($map, $numg) = @_;
my ($dat, $numRanges);
my (@keys) = sort {$a <=> $b} keys %{$map};
my ($first, $last, $col, $g);
$first = -1;
$last = -1;
$col = -1;
foreach $g (@keys)
{
next unless ($g > 0 or $g eq '0');
if ($g != $last + 1 || $map->{$g} != $col)
{
if ($col != -1)
{
$dat .= pack("nnn", $first, $last, $col);
$numRanges++;
}
$first = $last = $g;
$col = $map->{$g};
}
else
{ $last++; }
}
if ($col != -1)
{
$dat .= pack("nnn", $first, $last, $col);
$numRanges++;
}
return ($numRanges, $dat);
}
sub unpack_code
{
my ($self, $str) = @_;
my (@res, $i, $j);
my ($l) = length($str);
for ($i = 0; $i < $l; )
{
my ($a) = unpack('C', substr($str, $i, 1));
my ($o) = $opcodes[$a];
my (@args);
my (@types) = split('', $o->[2]);
++$i;
for ($j = 0; $j < @types; ++$j)
{
my ($t) = $types[$j];
if ($t eq 'v')
{
my ($n) = unpack('C', substr($str, $i, 1));
push (@args, unpack('C*', substr($str, $i + 1, $n)));
$i += $n + 1;
}
elsif ($t eq 'L' or $t eq 'N' or $t eq 'G' or $t eq 'C')
{
push (@args, unpack('n', substr($str, $i, 2)));
$i += 2;
$j++;
}
else
{
push (@args, unpack($t eq 's' ? 'c' : 'C', substr($str, $i, 1)));
$i++;
}
}
push (@res, [$o->[0], @args]);
}
return @res;
}
sub pack_code
{
my ($self, $cmds) = @_;
my ($res);
foreach my $c (@{$cmds})
{
my ($ind) = $opnames{$c->[0]};
my ($i) = 1;
$res .= pack('C', $ind);
# my (@types) = unpack('C*', $opcodes[$ind][2]);
my (@types) = split('', $opcodes[$ind][2]);
for (my $j = 0; $j < @types; $j++)
{
my ($t) = $types[$j];
if ($t eq 'v')
{
my ($n) = scalar @{$c} - 1;
$res .= pack('C*', $n, @{$c}[1..$#{$c}]);
$i += $n;
}
elsif ($t eq 'C' or $t eq 'G' or $t eq 'L' or $t eq 'N')
{
$res .= pack('n', $c->[$i]);
$j++;
}
else
{ $res .= pack($t eq 's' ? 'c' : 'C', $c->[$i]); }
$i++;
}
}
return $res;
}
sub packcode
{
my ($code, $isconstraint) = @_;
my ($dat, $c, $res);
$c = 1;
$dat = "\000";
foreach (@{$code})
{
if ($_)
{
push(@{$res}, $c);
$dat .= $_;
$c += length($_);
}
else
{ push(@{$res}, $isconstraint ? 0 : $c); }
}
push(@{$res}, $c);
return ($res, $dat);
}
sub out_pass
{
my ($self, $fh, $pass, $silf, $subbase) = @_;
my (@orulemap, $dat, $actiondat, $numRanges, $c);
my (@offsets, $res, $pbase);
$pbase = $fh->tell();
# printf "pass base = %04X, ", $pbase - $subbase;
$fh->print(TTF_Pack("CCCCSSLLLLSSSS", $pass->{'flags'}, $pass->{'maxRuleLoop'}, $pass->{'maxRuleContext'},
$pass->{'maxBackup'}, $pass->{'numRules'}, 24, 0, 0, 0, 0, $pass->{'numRows'},
$pass->{'numTransitional'}, $pass->{'numSuccess'}, $pass->{'numColumns'}));
($numRanges, $dat) = chopranges($pass->{'colmap'});
# print "numranges = $numRanges\n";
$fh->print(TTF_Pack("SSSS", TTF_bininfo($numRanges, 6)));
$fh->print($dat);
$dat = "";
$c = 0;
# print "transitions = $pass->{'numTransitional'}, success = $pass->{'numSuccess'}, rows = $pass->{'numRows'}\n";
my ($sucbase) = $pass->{'numRows'} - $pass->{'numSuccess'};
foreach (0 .. ($pass->{'numSuccess'} - 1))
{
push(@orulemap, $c);
if (defined $pass->{'rulemap'}[$_])
{
$dat .= pack("n*", @{$pass->{'rulemap'}[$_]});
$c += @{$pass->{'rulemap'}[$_]};
}
else
{
print "No rules for " . ($sucbase + $_);
if ($sucbase + $_ < $pass->{'numTransitional'})
{ print ": (" . join(",", @{$pass->{'fsm'}[$sucbase + $_]}) . ")"; }
print "\n";
}
}
push (@orulemap, $c);
$fh->print(pack("n*", @orulemap));
$fh->print($dat);
$fh->print(TTF_Pack("CC", $pass->{'minRulePreContext'}, $pass->{'maxRulePreContext'}));
$fh->print(pack("n*", @{$pass->{'startStates'}}));
$fh->print(pack("n*", @{$pass->{'ruleSortKeys'}}));
$fh->print(pack("C*", @{$pass->{'rulePreContexts'}}));
$fh->print(TTF_Pack("CS", 0, $pass->{'passConstraintLen'}));
my ($oconstraints, $oactions);
($oconstraints, $dat) = packcode($pass->{'constraintCode'}, 1);
($oactions, $actiondat) = packcode($pass->{'actionCode'}, 0);
# printf "constraint offsets @ %X\n", $fh->tell();
$fh->print(pack("n*", @{$oconstraints}));
# printf "action offsets @ %X\n", $fh->tell();
$fh->print(pack("n*", @{$oactions}));
# printf "fsm @ %X\n", $fh->tell();
foreach (@{$pass->{'fsm'}})
{ $fh->print(pack("n*", @{$_})); }
# printf "end of fsm @ %X\n", $fh->tell();
$fh->print(pack("C", $pass->{'collisionThreshold'}));
push(@offsets, $fh->tell() - $subbase);
$fh->print($pass->{'passConstraintCode'});
push(@offsets, $fh->tell() - $subbase);
$fh->print($dat);
push(@offsets, $fh->tell() - $subbase);
$fh->print($actiondat);
push(@offsets, 0);
print join(", ", @offsets) . "\n";
$res = $fh->tell();
$fh->seek($pbase + 8, 0);
$fh->print(pack("N*", @offsets));
$fh->seek($res, 0);
# printf "end = %04X\n", $res - $subbase;
return $res;
}
=head2 out
Outputs a Silf data structure to a font file in binary format
=cut
sub out
{
my ($self, $fh) = @_;
my ($silf, $base, $subbase, $silfc, $end);
return $self->SUPER::out($fh) unless ($self->{' read'});
$base = $fh->tell();
if ($self->{'Version'} >= 3)
{ $fh->print(TTF_Pack("vvSS", $self->{'Version'}, $self->{'Compiler'}, $#{$self->{'SILF'}} + 1, 0)); }
else
{ $fh->print(TTF_Pack("vSS", $self->{'Version'}, $#{$self->{'SILF'}} + 1, 0)); }
$fh->print(pack('N*', (0) x (@{$self->{'SILF'}})));
foreach $silf (@{$self->{'SILF'}})
{
my ($subbase) = $fh->tell();
my ($numlin, $i, @opasses, $oPasses, $oPseudo, $ooPasses);
if ($self->{'Version'} >= 3)
{
$fh->seek($base + 12 + $silfc * 4, 0);
$fh->print(pack('N', $subbase - $base));
$fh->seek($subbase, 0);
$fh->print(TTF_Pack("vSS", $silf->{'Version'}, $ooPasses, $oPseudo));
}
else
{
$fh->seek($base + 8 + $silfc * 4, 0);
$fh->print(pack('N', $subbase - $base));
$fh->seek($subbase, 0);
}
$fh->print(TTF_Pack("SssCCCCCCCCCCCCCC",
$silf->{'maxGlyphID'}, $silf->{'Ascent'}, $silf->{'Descent'},
scalar @{$silf->{'PASS'}}, $silf->{'substPass'}, $silf->{'posPass'}, $silf->{'justPass'}, $silf->{'bidiPass'},
$silf->{'Flags'}, $silf->{'maxPreContext'}, $silf->{'maxPostContext'}, $silf->{'attrPseudo'},
$silf->{'attrBreakWeight'}, $silf->{'attrDirectionality'}, $silf->{'attrMirror'}, $silf->{'passBits'}, $#{$silf->{'JUST'}} + 1));
foreach (@{$silf->{'JUST'}})
{ $fh->print(TTF_Pack("CCCCCCCC", $_->{'attrStretch'}, $_->{'attrShrink'}, $_->{'attrStep'},
$_->{'attrWeight'}, $_->{'runto'}, 0, 0, 0)); }
$fh->print(TTF_Pack("SCCCCCCCC", $silf->{'numLigComp'}, $silf->{'numUserAttr'}, $silf->{'maxCompPerLig'},
$silf->{'direction'}, $silf->{'attCollisions'}, 0, 0, 0, $#{$silf->{'CRIT_FEATURE'}} + 1));
$fh->print(pack("n*", @{$silf->{'CRIT_FEATURE'}}));
$fh->print(TTF_Pack("CC", 0, $#{$silf->{'scripts'}} + 1));
foreach (@{$self->{'scripts'}})
{ $fh->print(pack("a4", $_)); }
$fh->print(TTF_Pack("S", $silf->{'lbGID'}));
$ooPasses = $fh->tell();
if ($silf->{'PASS'}) { $fh->print(pack("N*", (0) x (@{$silf->{'PASS'}} + 1)));}
$oPseudo = $fh->tell() - $subbase;
my (@pskeys) = keys %{$silf->{'pseudos'}};
$fh->print(TTF_Pack("SSSS", TTF_bininfo(scalar @pskeys, 6)));
foreach my $k (sort {$a <=> $b} @pskeys)
{ $fh->print(TTF_Pack("Ls", $k, $silf->{'pseudos'}{$k})); }
$numlin = $silf->{'numLinearClasses'};
$fh->print(TTF_Pack("SS", scalar @{$silf->{'classes'}}, $numlin));
my (@coffsets);
# printf "%X, ", $fh->tell() - $base;
my ($cbase) = (scalar @{$silf->{'classes'}} + 1) * ($self->{'Version'} >= 4 ? 4 : 2) + 4;
for ($i = 0; $i < $numlin; $i++)
{
push (@coffsets, $cbase);
$cbase += 2 * scalar @{$silf->{'classes'}[$i]};
}
my (@nonlinclasses);
for ($i = $numlin; $i < @{$silf->{'classes'}}; $i++)
{
my (@c, $d, @d);
my $c = $silf->{'classes'}[$i];
push (@coffsets, $cbase);
@c = sort {$c->[$a] <=> $c->[$b]} (0 .. $#{$c});
foreach $d (@c)
{ push (@d, $c->[$d], $d); }
push (@nonlinclasses, [@d]);
my ($len) = scalar @d;
$cbase += 8 + 2 * $len;
}
push (@coffsets, $cbase);
$fh->print(pack(($self->{'Version'} >= 4 ? 'N*' : 'n*'), @coffsets));
for ($i = 0; $i < $numlin; $i++)
{ $fh->print(pack("n*", @{$silf->{'classes'}[$i]})); }
# printf "%X, ", $fh->tell() - $base;
for ($i = $numlin; $i < @{$silf->{'classes'}}; $i++)
{
my ($num) = scalar @{$nonlinclasses[$i-$numlin]};
my (@bin) = TTF_bininfo($num/2, 1);
$fh->print(TTF_Pack("SSSS", @bin));
$fh->print(pack("n*", @{$nonlinclasses[$i-$numlin]}));
}
$oPasses = $fh->tell() - $subbase;
# printf "original pass = %04X\n", $oPasses;
push (@opasses, $oPasses);
foreach (@{$silf->{'PASS'}})
{ push(@opasses, $self->out_pass($fh, $_, $silf, $subbase) - $subbase); }
$end = $fh->tell();
$fh->seek($ooPasses, 0);
$fh->print(pack("N*", @opasses));
if ($self->{'Version'} >= 3)
{
$fh->seek($subbase + 4, 0);
$fh->print(TTF_Pack("SS", $ooPasses - $subbase, $oPseudo));
}
$fh->seek($end, 0);
$silfc++;
}
}
sub XML_element
{
my ($self, $context, $depth, $k, $val, $ind) = @_;
my ($fh) = $context->{'fh'};
my ($i);
return $self if ($k eq 'LOC');
if ($k eq 'classes')
{
$fh->print("$depth<classes>\n");
foreach $i (0 .. $#{$val})
{
$fh->printf("$depth <class num='%d'>\n", $i);
$fh->printf("$depth " . join(" ", map{sprintf("%d", $_)} @{$val->[$i]}));
$fh->print("\n$depth </class>\n");
}
$fh->print("$depth</classes>\n");
}
elsif ($k eq 'fsm')
{
$fh->print("$depth<fsm>\n");
my ($i) = 0;
foreach (@{$val})
{ $fh->print("$depth <row index='$i'>" . join(" ", @{$_}) . "</row>\n"); $i++; }
$fh->print("$depth</fsm>\n");
}
elsif ($k eq 'colmap')
{
my ($i);
$fh->print("$depth<colmap>");
foreach my $k (sort {$a <=> $b} keys %{$val})
{
if ($i++ % 8 == 0)
{ $fh->print("\n$depth "); }
$fh->printf(" %d=%d", $k, $val->{$k});
}
$fh->print("\n$depth</colmap>\n");
}
elsif ($k eq 'constraintCode' or $k eq 'actionCode')
{
$fh->print("$depth<$k>\n");
foreach my $i (0 .. $#{$val})
{
my (@rules) = $self->unpack_code($val->[$i]);
next unless (@rules);
$fh->print("$depth <elem index='$i' code='" . join(" ", unpack('C*', $val->[$i])) . "'>\n");
foreach my $r (@rules)
{ $fh->print("$depth $r->[0]: ". join(", ", @{$r}[1..$#{$r}]) . "\n"); }
$fh->print("$depth </elem>\n");
}
$fh->print("$depth</$k>\n");
}
else
{ return $self->SUPER::XML_element($context, $depth, $k, $val, $ind); }
$self;
}
=head2 $t->minsize()
Returns the minimum size this table can be. If it is smaller than this, then the table
must be bad and should be deleted or whatever.
=cut
sub minsize
{
return 4;
}
1;
=head1 AUTHOR
Martin Hosken L<http://scripts.sil.org/FontUtils>.
=head1 LICENSING
Copyright (c) 1998-2016, SIL International (http://www.sil.org)
This module is released under the terms of the Artistic License 2.0.
For details, see the full text of the license in the file LICENSE.
=cut