;;; Common Subexpression Elimination (CSE) on Tree-IL
;; Copyright (C) 2011, 2012, 2013 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (language tree-il cse)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language tree-il effects)
#:use-module (ice-9 vlist)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:export (cse))
;;;
;;; This pass eliminates common subexpressions in Tree-IL. It works
;;; best locally -- within a function -- so it is meant to be run after
;;; partial evaluation, which usually inlines functions and so opens up
;;; a bigger space for CSE to work.
;;;
;;; The algorithm traverses the tree of expressions, returning two
;;; values: the newly rebuilt tree, and a "database". The database is
;;; the set of expressions that will have been evaluated as part of
;;; evaluating an expression. For example, in:
;;;
;;; (1- (+ (if a b c) (* x y)))
;;;
;;; We can say that when it comes time to evaluate (1- <>), that the
;;; subexpressions +, x, y, and (* x y) must have been evaluated in
;;; values context. We know that a was evaluated in test context, but
;;; we don't know if it was true or false.
;;;
;;; The expressions in the database /dominate/ any subsequent
;;; expression: FOO dominates BAR if evaluation of BAR implies that any
;;; effects associated with FOO have already occured.
;;;
;;; When adding expressions to the database, we record the context in
;;; which they are evaluated. We treat expressions in test context
;;; specially: the presence of such an expression indicates that the
;;; expression is true. In this way we can elide duplicate predicates.
;;;
;;; Duplicate predicates are not common in code that users write, but
;;; can occur quite frequently in macro-generated code.
;;;
;;; For example:
;;;
;;; (and (foo? x) (foo-bar x))
;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (struct-ref x 1)
;;; (throw 'not-a-foo))
;;; #f))
;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (struct-ref x 1)
;;; #f)
;;;
;;; A conditional bailout in effect context also has the effect of
;;; adding predicates to the database:
;;;
;;; (begin (foo-bar x) (foo-baz x))
;;; => (begin
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (struct-ref x 1)
;;; (throw 'not-a-foo))
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (struct-ref x 2)
;;; (throw 'not-a-foo)))
;;; => (begin
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
;;; (struct-ref x 1)
;;; (throw 'not-a-foo))
;;; (struct-ref x 2))
;;;
;;; When removing code, we have to ensure that the semantics of the
;;; source program and the residual program are the same. It's easy to
;;; ensure that they have the same value, because those manipulations
;;; are just algebraic, but the tricky thing is to ensure that the
;;; expressions exhibit the same ordering of effects. For that, we use
;;; the effects analysis of (language tree-il effects). We only
;;; eliminate code if the duplicate code commutes with all of the
;;; dominators on the path from the duplicate to the original.
;;;
;;; The implementation uses vhashes as the fundamental data structure.
;;; This can be seen as a form of global value numbering. This
;;; algorithm currently spends most of its time in vhash-assoc. I'm not
;;; sure whether that is due to our bad hash function in Guile 2.0, an
;;; inefficiency in vhashes, or what. Overall though the complexity
;;; should be linear, or N log N -- whatever vhash-assoc's complexity
;;; is. Walking the dominators is nonlinear, but that only happens when
;;; we've actually found a common subexpression so that should be OK.
;;;
;; Logging helpers, as in peval.
;;
(define-syntax *logging* (identifier-syntax #f))
;; (define %logging #f)
;; (define-syntax *logging* (identifier-syntax %logging))
(define-syntax log
(syntax-rules (quote)
((log 'event arg ...)
(if (and *logging*
(or (eq? *logging* #t)
(memq 'event *logging*)))
(log* 'event arg ...)))))
(define (log* event . args)
(let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
'pretty-print)))
(pp `(log ,event . ,args))
(newline)
(values)))
;; A pre-pass on the source program to determine the set of assigned
;; lexicals.
;;
(define* (build-assigned-var-table exp #:optional (table vlist-null))
(tree-il-fold
(lambda (exp res)
res)
(lambda (exp res)
(match exp
(($ <lexical-set> src name gensym exp)
(vhash-consq gensym #t res))
(_ res)))
(lambda (exp res) res)
table exp))
(define (boolean-valued-primitive? primitive)
(or (negate-primitive primitive)
(eq? primitive 'not)
(let ((chars (symbol->string primitive)))
(eqv? (string-ref chars (1- (string-length chars)))
#\?))))
(define (boolean-valued-expression? x ctx)
(match x
(($ <application> _
($ <primitive-ref> _ (? boolean-valued-primitive?))) #t)
(($ <const> _ (? boolean?)) #t)
(_ (eq? ctx 'test))))
(define (singly-valued-expression? x ctx)
(match x
(($ <const>) #t)
(($ <lexical-ref>) #t)
(($ <void>) #t)
(($ <lexical-ref>) #t)
(($ <primitive-ref>) #t)
(($ <module-ref>) #t)
(($ <toplevel-ref>) #t)
(($ <application> _
($ <primitive-ref> _ (? singly-valued-primitive?))) #t)
(($ <application> _ ($ <primitive-ref> _ 'values) (val)) #t)
(($ <lambda>) #t)
(_ (eq? ctx 'value))))
(define* (cse exp)
"Eliminate common subexpressions in EXP."
(define assigned-lexical?
(let ((table (build-assigned-var-table exp)))
(lambda (sym)
(vhash-assq sym table))))
(define %compute-effects
(make-effects-analyzer assigned-lexical?))
(define (negate exp ctx)
(match exp
(($ <const> src x)
(make-const src (not x)))
(($ <void> src)
(make-const src #f))
(($ <conditional> src test consequent alternate)
(make-conditional src test (negate consequent ctx) (negate alternate ctx)))
(($ <application> _ ($ <primitive-ref> _ 'not)
((and x (? (cut boolean-valued-expression? <> ctx)))))
x)
(($ <application> src
($ <primitive-ref> _ (and pred (? negate-primitive)))
args)
(make-application src
(make-primitive-ref #f (negate-primitive pred))
args))
(_
(make-application #f (make-primitive-ref #f 'not) (list exp)))))
(define (hasher n)
(lambda (x size) (modulo n size)))
(define (add-to-db exp effects ctx db)
(let ((v (vector exp effects ctx))
(h (tree-il-hash exp)))
(vhash-cons v h db (hasher h))))
(define (control-flow-boundary db)
(let ((h (hashq 'lambda most-positive-fixnum)))
(vhash-cons 'lambda h db (hasher h))))
(define (find-dominating-expression exp effects ctx db)
(define (entry-matches? v1 v2)
(match (if (vector? v1) v1 v2)
(#(exp* effects* ctx*)
(and (tree-il=? exp exp*)
(or (not ctx) (eq? ctx* ctx))))
(_ #f)))
(let ((len (vlist-length db))
(h (tree-il-hash exp)))
(and (vhash-assoc #t db entry-matches? (hasher h))
(let lp ((n 0))
(and (< n len)
(match (vlist-ref db n)
(('lambda . h*)
;; We assume that lambdas can escape and thus be
;; called from anywhere. Thus code inside a lambda
;; only has a dominating expression if it does not
;; depend on any effects.
(and (not (depends-on-effects? effects &all-effects))
(lp (1+ n))))
((#(exp* effects* ctx*) . h*)
(log 'walk (unparse-tree-il exp) effects
(unparse-tree-il exp*) effects* ctx*)
(or (and (= h h*)
(or (not ctx) (eq? ctx ctx*))
(tree-il=? exp exp*))
(and (effects-commute? effects effects*)
(lp (1+ n)))))))))))
;; Return #t if EXP is dominated by an instance of itself. In that
;; case, we can exclude *type-check* effects, because the first
;; expression already caused them if needed.
(define (has-dominating-effect? exp effects db)
(or (constant? effects)
(and
(effect-free?
(exclude-effects effects
(logior &zero-values
&allocation
&type-check)))
(find-dominating-expression exp effects #f db))))
(define (find-dominating-test exp effects db)
(and
(effect-free?
(exclude-effects effects (logior &allocation
&type-check)))
(match exp
(($ <const> src val)
(if (boolean? val)
exp
(make-const src (not (not val)))))
;; For (not FOO), try to prove FOO, then negate the result.
(($ <application> src ($ <primitive-ref> _ 'not) (exp*))
(match (find-dominating-test exp* effects db)
(($ <const> _ val)
(log 'inferring exp (not val))
(make-const src (not val)))
(_
#f)))
(_
(cond
((find-dominating-expression exp effects 'test db)
;; We have an EXP fact, so we infer #t.
(log 'inferring exp #t)
(make-const (tree-il-src exp) #t))
((find-dominating-expression (negate exp 'test) effects 'test db)
;; We have a (not EXP) fact, so we infer #f.
(log 'inferring exp #f)
(make-const (tree-il-src exp) #f))
(else
;; Otherwise we don't know.
#f))))))
(define (add-to-env exp name sym db env)
(let* ((v (vector exp name sym (vlist-length db)))
(h (tree-il-hash exp)))
(vhash-cons v h env (hasher h))))
(define (augment-env env names syms exps db)
(if (null? names)
env
(let ((name (car names)) (sym (car syms)) (exp (car exps)))
(augment-env (if (or (assigned-lexical? sym)
(lexical-ref? exp))
env
(add-to-env exp name sym db env))
(cdr names) (cdr syms) (cdr exps) db))))
(define (find-dominating-lexical exp effects env db)
(define (entry-matches? v1 v2)
(match (if (vector? v1) v1 v2)
(#(exp* name sym db)
(tree-il=? exp exp*))
(_ #f)))
(define (unroll db base n)
(or (zero? n)
(match (vlist-ref db base)
(('lambda . h*)
;; See note in find-dominating-expression.
(and (not (depends-on-effects? effects &all-effects))
(unroll db (1+ base) (1- n))))
((#(exp* effects* ctx*) . h*)
(and (effects-commute? effects effects*)
(unroll db (1+ base) (1- n)))))))
(let ((h (tree-il-hash exp)))
(and (effect-free? (exclude-effects effects &type-check))
(vhash-assoc exp env entry-matches? (hasher h))
(let ((env-len (vlist-length env))
(db-len (vlist-length db)))
(let lp ((n 0) (m 0))
(and (< n env-len)
(match (vlist-ref env n)
((#(exp* name sym db-len*) . h*)
(let ((niter (- (- db-len db-len*) m)))
(and (unroll db m niter)
(if (and (= h h*) (tree-il=? exp* exp))
(make-lexical-ref (tree-il-src exp) name sym)
(lp (1+ n) (- db-len db-len*)))))))))))))
(define (lookup-lexical sym env)
(let ((env-len (vlist-length env)))
(let lp ((n 0))
(and (< n env-len)
(match (vlist-ref env n)
((#(exp _ sym* _) . _)
(if (eq? sym sym*)
exp
(lp (1+ n)))))))))
(define (intersection db+ db-)
(vhash-fold-right
(lambda (k h out)
(if (vhash-assoc k db- equal? (hasher h))
(vhash-cons k h out (hasher h))
out))
vlist-null
db+))
(define (concat db1 db2)
(vhash-fold-right (lambda (k h tail)
(vhash-cons k h tail (hasher h)))
db2 db1))
(let visit ((exp exp)
(db vlist-null) ; dominating expressions: #(exp effects ctx) -> hash
(env vlist-null) ; named expressions: #(exp name sym db) -> hash
(ctx 'values)) ; test, effect, value, or values
(define (parallel-visit exps db env ctx)
(let lp ((in exps) (out '()) (db* vlist-null))
(if (pair? in)
(call-with-values (lambda () (visit (car in) db env ctx))
(lambda (x db**)
(lp (cdr in) (cons x out) (concat db** db*))))
(values (reverse out) db*))))
(define (compute-effects exp)
(%compute-effects exp (lambda (sym) (lookup-lexical sym env))))
(define (bailout? exp)
(causes-effects? (compute-effects exp) &definite-bailout))
(define (return exp db*)
(let ((effects (compute-effects exp)))
(cond
((and (eq? ctx 'effect)
(not (lambda-case? exp))
(or (effect-free?
(exclude-effects effects
(logior &zero-values
&allocation)))
(has-dominating-effect? exp effects db)))
(cond
((void? exp)
(values exp db*))
(else
(log 'elide ctx (unparse-tree-il exp))
(values (make-void #f) db*))))
((and (boolean-valued-expression? exp ctx)
(find-dominating-test exp effects db))
=> (lambda (exp)
(log 'propagate-test ctx (unparse-tree-il exp))
(values exp db*)))
((and (singly-valued-expression? exp ctx)
(find-dominating-lexical exp effects env db))
=> (lambda (exp)
(log 'propagate-value ctx (unparse-tree-il exp))
(values exp db*)))
((and (constant? effects) (memq ctx '(value values)))
;; Adds nothing to the db.
(values exp db*))
(else
(log 'return ctx effects (unparse-tree-il exp) db*)
(values exp
(add-to-db exp effects ctx db*))))))
(log 'visit ctx (unparse-tree-il exp) db env)
(match exp
(($ <const>)
(return exp vlist-null))
(($ <void>)
(return exp vlist-null))
(($ <lexical-ref> _ _ gensym)
(return exp vlist-null))
(($ <lexical-set> src name gensym exp)
(let*-values (((exp db*) (visit exp db env 'value)))
(return (make-lexical-set src name gensym exp)
db*)))
(($ <let> src names gensyms vals body)
(let*-values (((vals db*) (parallel-visit vals db env 'value))
((body db**) (visit body (concat db* db)
(augment-env env names gensyms vals db)
ctx)))
(return (make-let src names gensyms vals body)
(concat db** db*))))
(($ <letrec> src in-order? names gensyms vals body)
(let*-values (((vals db*) (parallel-visit vals db env 'value))
((body db**) (visit body (concat db* db)
(augment-env env names gensyms vals db)
ctx)))
(return (make-letrec src in-order? names gensyms vals body)
(concat db** db*))))
(($ <fix> src names gensyms vals body)
(let*-values (((vals db*) (parallel-visit vals db env 'value))
((body db**) (visit body (concat db* db) env ctx)))
(return (make-fix src names gensyms vals body)
(concat db** db*))))
(($ <let-values> src producer consumer)
(let*-values (((producer db*) (visit producer db env 'values))
((consumer db**) (visit consumer (concat db* db) env ctx)))
(return (make-let-values src producer consumer)
(concat db** db*))))
(($ <dynwind> src winder body unwinder)
(let*-values (((pre db*) (visit winder db env 'value))
((body db**) (visit body (concat db* db) env ctx))
((post db***) (visit unwinder db env 'value)))
(return (make-dynwind src pre body post)
(concat db* (concat db** db***)))))
(($ <dynlet> src fluids vals body)
(let*-values (((fluids db*) (parallel-visit fluids db env 'value))
((vals db**) (parallel-visit vals db env 'value))
((body db***) (visit body (concat db** (concat db* db))
env ctx)))
(return (make-dynlet src fluids vals body)
(concat db*** (concat db** db*)))))
(($ <dynref> src fluid)
(let*-values (((fluid db*) (visit fluid db env 'value)))
(return (make-dynref src fluid)
db*)))
(($ <dynset> src fluid exp)
(let*-values (((fluid db*) (visit fluid db env 'value))
((exp db**) (visit exp db env 'value)))
(return (make-dynset src fluid exp)
(concat db** db*))))
(($ <toplevel-ref>)
(return exp vlist-null))
(($ <module-ref>)
(return exp vlist-null))
(($ <module-set> src mod name public? exp)
(let*-values (((exp db*) (visit exp db env 'value)))
(return (make-module-set src mod name public? exp)
db*)))
(($ <toplevel-define> src name exp)
(let*-values (((exp db*) (visit exp db env 'value)))
(return (make-toplevel-define src name exp)
db*)))
(($ <toplevel-set> src name exp)
(let*-values (((exp db*) (visit exp db env 'value)))
(return (make-toplevel-set src name exp)
db*)))
(($ <primitive-ref>)
(return exp vlist-null))
(($ <conditional> src test consequent alternate)
(let*-values
(((test db+) (visit test db env 'test))
((converse db-) (visit (negate test 'test) db env 'test))
((consequent db++) (visit consequent (concat db+ db) env ctx))
((alternate db--) (visit alternate (concat db- db) env ctx)))
(match (make-conditional src test consequent alternate)
(($ <conditional> _ ($ <const> _ exp))
(if exp
(return consequent (concat db++ db+))
(return alternate (concat db-- db-))))
;; (if FOO A A) => (begin FOO A)
(($ <conditional> src _
($ <const> _ a) ($ <const> _ (? (cut equal? a <>))))
(visit (make-sequence #f (list test (make-const #f a)))
db env ctx))
;; (if FOO #t #f) => FOO for boolean-valued FOO.
(($ <conditional> src
(? (cut boolean-valued-expression? <> ctx))
($ <const> _ #t) ($ <const> _ #f))
(return test db+))
;; (if FOO #f #t) => (not FOO)
(($ <conditional> src _ ($ <const> _ #f) ($ <const> _ #t))
(visit (negate test ctx) db env ctx))
;; Allow "and"-like conditions to accumulate in test context.
((and c ($ <conditional> _ _ _ ($ <const> _ #f)))
(return c (if (eq? ctx 'test) (concat db++ db+) vlist-null)))
((and c ($ <conditional> _ _ ($ <const> _ #f) _))
(return c (if (eq? ctx 'test) (concat db-- db-) vlist-null)))
;; Conditional bailouts turn expressions into predicates.
((and c ($ <conditional> _ _ _ (? bailout?)))
(return c (concat db++ db+)))
((and c ($ <conditional> _ _ (? bailout?) _))
(return c (concat db-- db-)))
(c
(return c (intersection (concat db++ db+) (concat db-- db-)))))))
(($ <application> src proc args)
(let*-values (((proc db*) (visit proc db env 'value))
((args db**) (parallel-visit args db env 'value)))
(return (make-application src proc args)
(concat db** db*))))
(($ <lambda> src meta body)
(let*-values (((body _) (if body
(visit body (control-flow-boundary db)
env 'values)
(values #f #f))))
(return (make-lambda src meta body)
vlist-null)))
(($ <lambda-case> src req opt rest kw inits gensyms body alt)
(let*-values (((inits _) (parallel-visit inits db env 'value))
((body db*) (visit body db env ctx))
((alt _) (if alt
(visit alt db env ctx)
(values #f #f))))
(return (make-lambda-case src req opt rest kw inits gensyms body alt)
(if alt vlist-null db*))))
(($ <sequence> src exps)
(let lp ((in exps) (out '()) (db* vlist-null))
(match in
((last)
(let*-values (((last db**) (visit last (concat db* db) env ctx)))
(if (null? out)
(return last (concat db** db*))
(return (make-sequence src (reverse (cons last out)))
(concat db** db*)))))
((head . rest)
(let*-values (((head db**) (visit head (concat db* db) env 'effect)))
(cond
((sequence? head)
(lp (append (sequence-exps head) rest) out db*))
((void? head)
(lp rest out db*))
(else
(lp rest (cons head out) (concat db** db*)))))))))
(($ <prompt> src tag body handler)
(let*-values (((tag db*) (visit tag db env 'value))
((body _) (visit body (concat db* db) env 'values))
((handler _) (visit handler (concat db* db) env ctx)))
(return (make-prompt src tag body handler)
db*)))
(($ <abort> src tag args tail)
(let*-values (((tag db*) (visit tag db env 'value))
((args db**) (parallel-visit args db env 'value))
((tail db***) (visit tail db env 'value)))
(return (make-abort src tag args tail)
(concat db* (concat db** db***))))))))