shell bypass 403
package GIS::Distance::Vincenty;
use 5.008001;
use strictures 2;
our $VERSION = '0.20';
use parent 'GIS::Distance::Formula';
use Math::Trig qw( deg2rad pi tan atan asin );
use namespace::clean;
sub _distance {
my ($lat1, $lon1, $lat2, $lon2) = @_;
return 0 if (($lon1==$lon2) and ($lat1==$lat2));
$lon1 = deg2rad($lon1);
$lat1 = deg2rad($lat1);
$lon2 = deg2rad($lon2);
$lat2 = deg2rad($lat2);
my($a,$b,$f) = (6378137,6356752.3142,1/298.257223563);
my $l = $lon2 - $lon1;
my $u1 = atan((1-$f) * tan($lat1));
my $u2 = atan((1-$f) * tan($lat2));
my $sin_u1 = sin($u1); my $cos_u1 = cos($u1);
my $sin_u2 = sin($u2); my $cos_u2 = cos($u2);
my $lambda = $l;
my $lambda_pi = 2 * pi;
my $iter_limit = 20;
my($cos_sq_alpha,$sin_sigma,$cos2sigma_m,$cos_sigma,$sigma) = (0,0,0,0,0);
while( abs($lambda-$lambda_pi) > 1e-12 && --$iter_limit>0 ){
my $sin_lambda = sin($lambda); my $cos_lambda = cos($lambda);
$sin_sigma = sqrt(($cos_u2*$sin_lambda) * ($cos_u2*$sin_lambda) +
($cos_u1*$sin_u2-$sin_u1*$cos_u2*$cos_lambda) * ($cos_u1*$sin_u2-$sin_u1*$cos_u2*$cos_lambda));
$cos_sigma = $sin_u1*$sin_u2 + $cos_u1*$cos_u2*$cos_lambda;
$sigma = atan2($sin_sigma, $cos_sigma);
my $alpha = asin($cos_u1 * $cos_u2 * $sin_lambda / $sin_sigma);
$cos_sq_alpha = cos($alpha) * cos($alpha);
$cos2sigma_m = $cos_sigma - 2*$sin_u1*$sin_u2/$cos_sq_alpha;
my $cc = $f/16*$cos_sq_alpha*(4+$f*(4-3*$cos_sq_alpha));
$lambda_pi = $lambda;
$lambda = $l + (1-$cc) * $f * sin($alpha) *
($sigma + $cc*$sin_sigma*($cos2sigma_m+$cc*$cos_sigma*(-1+2*$cos2sigma_m*$cos2sigma_m)));
}
my $usq = $cos_sq_alpha*($a*$a-$b*$b)/($b*$b);
my $aa = 1 + $usq/16384*(4096+$usq*(-768+$usq*(320-175*$usq)));
my $bb = $usq/1024 * (256+$usq*(-128+$usq*(74-47*$usq)));
my $delta_sigma = $bb*$sin_sigma*($cos2sigma_m+$bb/4*($cos_sigma*(-1+2*$cos2sigma_m*$cos2sigma_m)-
$bb/6*$cos2sigma_m*(-3+4*$sin_sigma*$sin_sigma)*(-3+4*$cos2sigma_m*$cos2sigma_m)));
my $c = $b*$aa*($sigma-$delta_sigma);
return $c / 1000;
}
1;
__END__
=encoding utf8
=head1 NAME
GIS::Distance::Vincenty - Thaddeus Vincenty distance calculations.
=head1 DESCRIPTION
For the benefit of the terminally obsessive (as well as the genuinely needy),
Thaddeus Vincenty devised formulae for calculating geodesic distances between
a pair of latitude/longitude points on the earth's surface, using an accurate
ellipsoidal model of the earth.
Vincenty's formula is accurate to within 0.5mm, or 0.000015", on the ellipsoid
being used. Calculations based on a spherical model, such as the (much simpler)
Haversine, are accurate to around 0.3% (which is still good enough for most
purposes).
The accuracy quoted by Vincenty applies to the theoretical ellipsoid
being used, which will differ (to varying degree) from the real earth geoid.
If you happen to be located in Colorado, 2km above msl, distances will be 0.03%
greater. In the UK, if you measure the distance from Land's End to John O'
Groats using WGS-84, it will be 28m - 0.003% - greater than using the Airy
ellipsoid, which provides a better fit for the UK.
Take a look at the L<GIS::Distance::ALT> formula for a much quicker
alternative with nearly the same accuracy.
A faster (XS) version of this formula is available as
L<GIS::Distance::Fast::Vincenty>.
Normally this module is not used directly. Instead L<GIS::Distance>
is used which in turn interfaces with the various formula classes.
=head1 FORMULA
a, b = major & minor semiaxes of the ellipsoid
f = flattening (a-b)/a
L = lon2 - lon1
u1 = atan((1-f) * tan(lat1))
u2 = atan((1-f) * tan(lat2))
sin_u1 = sin(u1)
cos_u1 = cos(u1)
sin_u2 = sin(u2)
cos_u2 = cos(u2)
lambda = L
lambda_pi = 2PI
while abs(lambda-lambda_pi) > 1e-12
sin_lambda = sin(lambda)
cos_lambda = cos(lambda)
sin_sigma = sqrt((cos_u2 * sin_lambda) * (cos_u2*sin_lambda) +
(cos_u1*sin_u2-sin_u1*cos_u2*cos_lambda) * (cos_u1*sin_u2-sin_u1*cos_u2*cos_lambda))
cos_sigma = sin_u1*sin_u2 + cos_u1*cos_u2*cos_lambda
sigma = atan2(sin_sigma, cos_sigma)
alpha = asin(cos_u1 * cos_u2 * sin_lambda / sin_sigma)
cos_sq_alpha = cos(alpha) * cos(alpha)
cos2sigma_m = cos_sigma - 2*sin_u1*sin_u2/cos_sq_alpha
cc = f/16*cos_sq_alpha*(4+f*(4-3*cos_sq_alpha))
lambda_pi = lambda
lambda = L + (1-cc) * f * sin(alpha) *
(sigma + cc*sin_sigma*(cos2sigma_m+cc*cos_sigma*(-1+2*cos2sigma_m*cos2sigma_m)))
}
usq = cos_sq_alpha*(a*a-b*b)/(b*b);
aa = 1 + usq/16384*(4096+usq*(-768+usq*(320-175*usq)))
bb = usq/1024 * (256+usq*(-128+usq*(74-47*usq)))
delta_sigma = bb*sin_sigma*(cos2sigma_m+bb/4*(cos_sigma*(-1+2*cos2sigma_m*cos2sigma_m)-
bb/6*cos2sigma_m*(-3+4*sin_sigma*sin_sigma)*(-3+4*cos2sigma_m*cos2sigma_m)))
c = b*aa*(sigma-delta_sigma)
=head1 SEE ALSO
=over
=item *
L<http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf>
=item *
L<http://www.movable-type.co.uk/scripts/LatLongVincenty.html>
=back
=head1 SUPPORT
See L<GIS::Distance/SUPPORT>.
=head1 AUTHORS
See L<GIS::Distance/AUTHORS>.
=head1 LICENSE
See L<GIS::Distance/LICENSE>.
=cut