# Copyright (c) 1999-2017 Rob Fugina <robf@fugina.com>
# Distributed under the terms of the GNU Public License, Version 3.0
package Astro::SunTime;
use vars qw(@ISA @EXPORT $VERSION);
$VERSION = 0.06;
@ISA = qw(Exporter);
@EXPORT = qw(sun_time);
# Results can be checked with: http://aa.usno.navy.mil/data/docs/RS_OneYear.php
# 09/03/00 :: winter Make ParseDate optional. It is overkill and I could not get it to
# compile in perl2exe. It gave runaway comment errors :(
# 10/12/00 :: winter Change time_zone check to defined, to allow for time_zone 0
use POSIX;
use strict;
# sun_time takes:
# type => 'rise' | 'set'
# latitude
# longitude
# time_zone => hours from GMT
# date => date parsable by Time::ParseDate::parsedate()
# time => to feed to localtime
sub sun_time
{
my %params = @_;
my $type = $params{type} || 'rise';
my $latitude = (defined $params{latitude}) ? $params{latitude} : 38.74274;
my $longitude = (defined $params{longitude}) ? $params{longitude} : -90.560143;
my $time_zone = (defined $params{time_zone}) ? $params{time_zone} : -6;
my $time;
if ($params{date}) {
require Time::ParseDate;
$time = Time::ParseDate::parsedate($params{date});
}
elsif ($params{time}) {
$time = $params{time};
}
else {
$time = time;
}
my @suntime = localtime($time);
my $yday = $suntime[7] + 1;
my $A = 1.5708;
my $B = 3.14159;
my $C = 4.71239;
my $D = 6.28319;
my $E = 0.0174533 * $latitude;
my $F = 0.0174533 * $longitude;
my $G = 0.261799 * $time_zone;
# For astronomical twilight, use R = -.309017
# For nautical twilight, use R = -.207912
# For civil twilight, use R = -.104528
# For sunrise or sunset, use R = -.0145439
my $R = -.0145439;
if ($params{twilight}) {
if($params{twilight} eq 'astronomical') {
$R = -.309017;
}
elsif($params{twilight} eq 'nautical') {
$R = -.207912;
}
elsif($params{twilight} eq 'civil') {
$R = -.104528;
}
}
my $J = ($type eq 'rise') ? $A : $C;
my $K = $yday + (($J - $F) / $D);
my $L = ($K * .017202) - .0574039; # Solar Mean Anomoly
my $M = $L + .0334405 * sin($L); # Solar True Longitude
$M += 4.93289 + (3.49066E-04) * sin(2 * $L);
$M = &normalize($M, $D); # Quadrant Determination
$M += 4.84814E-06 if ($M / $A) - int($M / $A) == 0;
my $P = sin($M) / cos($M); # Solar Right Ascension
$P = atan2(.91746 * $P, 1);
# Quadrant Adjustment
if ($M > $C)
{
$P += $D;
}
elsif ($M > $A)
{
$P += $B;
}
my $Q = .39782 * sin($M); # Solar Declination
$Q = $Q / sqrt(-$Q * $Q + 1); # This is how the original author wrote it!
$Q = atan2($Q, 1);
my $S = $R - (sin($Q) * sin($E));
$S = $S / (cos($Q) * cos($E));
return 'none' if abs($S) > 1; # Null phenomenon
$S = $S / sqrt(-$S * $S + 1);
$S = $A - atan2($S, 1);
$S = $D - $S if $type eq 'rise';
my $T = $S + $P - 0.0172028 * $K - 1.73364; # Local apparent time
my $U = $T - $F; # Universal timer
my $V = $U + $G; # Wall clock time
$V = &normalize($V, $D);
$V = $V * 3.81972;
my $hour = int($V);
my $min = int(($V - $hour) * 60 + 0.5);
@suntime[2,1,0] = ($hour, $min, 0);
@suntime = localtime(mktime(@suntime)); # normalize date structure
return sprintf("%d:%02d", @suntime[2,1]);
}
sub normalize
{
my $Z = shift;
my $D = shift;
die "Trying to normalize with zero offset..." if ($D == 0);
while ($Z < 0) {$Z = $Z + $D}
while ($Z >= $D) {$Z = $Z - $D}
return $Z;
}
1;
__END__