#
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::GSLSF::ELLINT;
our @EXPORT_OK = qw(PDL::PP gsl_sf_ellint_Kcomp PDL::PP gsl_sf_ellint_Ecomp PDL::PP gsl_sf_ellint_F PDL::PP gsl_sf_ellint_E PDL::PP gsl_sf_ellint_P PDL::PP gsl_sf_ellint_D PDL::PP gsl_sf_ellint_RC PDL::PP gsl_sf_ellint_RD PDL::PP gsl_sf_ellint_RF PDL::PP gsl_sf_ellint_RJ );
our %EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
our @ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::GSLSF::ELLINT ;
=head1 NAME
PDL::GSLSF::ELLINT - PDL interface to GSL Special Functions
=head1 DESCRIPTION
This is an interface to the Special Function package present in the GNU Scientific Library.
=head1 SYNOPSIS
=cut
=head1 FUNCTIONS
=cut
=head2 gsl_sf_ellint_Kcomp
=for sig
Signature: (double k(); double [o]y(); double [o]e())
=for ref
Legendre form of complete elliptic integrals K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}].
=for bad
gsl_sf_ellint_Kcomp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_Kcomp = \&PDL::gsl_sf_ellint_Kcomp;
=head2 gsl_sf_ellint_Ecomp
=for sig
Signature: (double k(); double [o]y(); double [o]e())
=for ref
Legendre form of complete elliptic integrals E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
=for bad
gsl_sf_ellint_Ecomp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_Ecomp = \&PDL::gsl_sf_ellint_Ecomp;
=head2 gsl_sf_ellint_F
=for sig
Signature: (double phi(); double k(); double [o]y(); double [o]e())
=for ref
Legendre form of incomplete elliptic integrals F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
=for bad
gsl_sf_ellint_F does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_F = \&PDL::gsl_sf_ellint_F;
=head2 gsl_sf_ellint_E
=for sig
Signature: (double phi(); double k(); double [o]y(); double [o]e())
=for ref
Legendre form of incomplete elliptic integrals E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
=for bad
gsl_sf_ellint_E does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_E = \&PDL::gsl_sf_ellint_E;
=head2 gsl_sf_ellint_P
=for sig
Signature: (double phi(); double k(); double n();
double [o]y(); double [o]e())
=for ref
Legendre form of incomplete elliptic integrals P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
=for bad
gsl_sf_ellint_P does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_P = \&PDL::gsl_sf_ellint_P;
=head2 gsl_sf_ellint_D
=for sig
Signature: (double phi(); double k();
double [o]y(); double [o]e())
=for ref
Legendre form of incomplete elliptic integrals D(phi,k)
=for bad
gsl_sf_ellint_D does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_D = \&PDL::gsl_sf_ellint_D;
=head2 gsl_sf_ellint_RC
=for sig
Signature: (double x(); double yy(); double [o]y(); double [o]e())
=for ref
Carlsons symmetric basis of functions RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}
=for bad
gsl_sf_ellint_RC does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_RC = \&PDL::gsl_sf_ellint_RC;
=head2 gsl_sf_ellint_RD
=for sig
Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
=for ref
Carlsons symmetric basis of functions RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
=for bad
gsl_sf_ellint_RD does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_RD = \&PDL::gsl_sf_ellint_RD;
=head2 gsl_sf_ellint_RF
=for sig
Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
=for ref
Carlsons symmetric basis of functions RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
=for bad
gsl_sf_ellint_RF does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_RF = \&PDL::gsl_sf_ellint_RF;
=head2 gsl_sf_ellint_RJ
=for sig
Signature: (double x(); double yy(); double z(); double p(); double [o]y(); double [o]e())
=for ref
Carlsons symmetric basis of functions RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
=for bad
gsl_sf_ellint_RJ does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_ellint_RJ = \&PDL::gsl_sf_ellint_RJ;
;
=head1 AUTHOR
This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it>,
2002 Christian Soeller.
All rights reserved. There
is no warranty. You are allowed to redistribute this software /
documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.
The GSL SF modules were written by G. Jungman.
=cut
# Exit with OK status
1;