NAME
Inline - Write Perl Subroutines in Other Programming Languages
VERSION
This document describes Inline version 0.86.
SYNOPSIS
use Inline C;
print "9 + 16 = ", add(9, 16), "\n";
print "9 - 16 = ", subtract(9, 16), "\n";
__END__
__C__
int add(int x, int y) {
return x + y;
}
int subtract(int x, int y) {
return x - y;
}
DESCRIPTION
The Inline module allows you to put source code from other programming
languages directly "inline" in a Perl script or module. The code is
automatically compiled as needed, and then loaded for immediate access
from Perl.
Inline saves you from the hassle of having to write and compile your
own glue code using facilities like XS or SWIG. Simply type the code
where you want it and run your Perl as normal. All the hairy details
are handled for you. The compilation and installation of your code
chunks all happen transparently; all you will notice is the delay of
compilation on the first run.
The Inline code only gets compiled the first time you run it (or
whenever it is modified) so you only take the performance hit once.
Code that is Inlined into distributed modules (like on the CPAN) will
get compiled when the module is installed, so the end user will never
notice the compilation time.
Best of all, it works the same on both Unix and Microsoft Windows. See
"Inline- Support" for support information.
Why Inline?
Do you want to know "Why would I use other languages in Perl?" or "Why
should I use Inline to do it?"? I'll try to answer both.
Why would I use other languages in Perl?
The most obvious reason is performance. For an interpreted language,
Perl is very fast. Many people will say "Anything Perl can do, C can
do faster". (They never mention the development time :-) Anyway, you
may be able to remove a bottleneck in your Perl code by using another
language, without having to write the entire program in that
language. This keeps your overall development time down, because
you're using Perl for all of the non-critical code.
Another reason is to access functionality from existing API-s that
use the language. Some of this code may only be available in binary
form. But by creating small subroutines in the native language, you
can "glue" existing libraries to your Perl. As a user of the CPAN,
you know that code reuse is a good thing. So why throw away those
Fortran libraries just yet?
If you are using Inline with the C language, then you can access the
full internals of Perl itself. This opens up the floodgates to both
extreme power and peril.
Maybe the best reason is "Because you want to!". Diversity keeps the
world interesting. TMTOWTDI!
Why should I use Inline to do it?
There are already two major facilities for extending Perl with C.
They are XS and SWIG. Both are similar in their capabilities, at
least as far as Perl is concerned. And both of them are quite
difficult to learn compared to Inline.
There is a big fat learning curve involved with setting up and using
the XS environment. You need to get quite intimate with the following
docs:
* perlxs
* perlxstut
* perlapi
* perlguts
* perlmod
* h2xs
* xsubpp
* ExtUtils::MakeMaker
With Inline you can be up and running in minutes. There is a C
Cookbook with lots of short but complete programs that you can extend
to your real-life problems. No need to learn about the complicated
build process going on in the background. You don't even need to
compile the code yourself. Inline takes care of every last detail
except writing the C code.
Perl programmers cannot be bothered with silly things like compiling.
"Tweak, Run, Tweak, Run" is our way of life. Inline does all the
dirty work for you.
Another advantage of Inline is that you can use it directly in a
script. You can even use it in a Perl one-liner. With XS and SWIG,
you always set up an entirely separate module. Even if you only have
one or two functions. Inline makes easy things easy, and hard things
possible. Just like Perl.
Finally, Inline supports several programming languages (not just C
and C++). As of this writing, Inline has support for C, C++, Java,
Python, Ruby, Tcl, Assembler, Basic, Guile, Befunge, Octave, Awk, BC,
TT (Template Toolkit), WebChat and even PERL. New Inline Language
Support Modules (ILSMs) are regularly being added. See Inline-API for
details on how to create your own ILSM.
USING THE INLINE.PM MODULE
Inline is a little bit different than most of the Perl modules that you
are used to. It doesn't import any functions into your namespace and it
doesn't have any object oriented methods. Its entire interface (with
two minor exceptions) is specified through the 'use Inline ...'
command.
This section will explain all of the different ways to use Inline. If
you want to begin using C with Inline immediately, see
Inline::C-Cookbook.
The Basics
The most basic form for using Inline is:
use Inline X => "X source code";
where 'X' is one of the supported Inline programming languages. The
second parameter identifies the source code that you want to bind to
Perl. The source code can be specified using any of the following
syntaxes:
The DATA Keyword.
use Inline Java => 'DATA';
# Perl code goes here ...
__DATA__
__Java__
/* Java code goes here ... */
The easiest and most visually clean way to specify your source code
in an Inline Perl program is to use the special DATA keyword. This
tells Inline to look for a special marker in your DATA filehandle's
input stream. In this example the special marker is __Java__, which
is the programming language surrounded by double underscores.
In case you've forgotten, the DATA pseudo file is comprised of all
the text after the __END__ or __DATA__ section of your program. If
you're working outside the main package, you'd best use the __DATA__
marker or else Inline will not find your code.
Using this scheme keeps your Perl code at the top, and all the ugly
Java stuff down below where it belongs. This is visually clean and
makes for more maintainable code. An excellent side benefit is that
you don't have to escape any characters like you might in a Perl
string. The source code is verbatim. For these reasons, I prefer this
method the most.
The only problem with this style is that since Perl can't read the
DATA filehandle until runtime, it obviously can't bind your functions
until runtime. The net effect of this is that you can't use your
Inline functions as barewords (without predeclaring them) because
Perl has no idea they exist during compile time.
The FILE and BELOW keywords.
use Inline::Files;
use Inline Java => 'file';
# Perl code goes here ...
__JAVA__
/* Java code goes here ... */
This is the newest method of specifying your source code. It makes
use of the Perl module Inline::Files written by Damian Conway. The
basic style and meaning are the same as for the DATA keyword, but
there are a few syntactic and semantic twists.
First, you must say 'use Inline::Files' before you 'use Inline' code
that needs those files. The special 'DATA' keyword is replaced by
either 'file' or 'below'. This allows for the bad pun idiom of:
use Inline C => 'below';
You can omit the __DATA__ tag now. Inline::Files is a source filter
that will remove these sections from your program before Perl
compiles it. They are then available for Inline to make use of. And
since this can all be done at compile time, you don't have to worry
about the caveats of the 'DATA' keyword.
This module has a couple small gotchas. Since Inline::Files only
recognizes file markers with capital letters, you must specify the
capital form of your language name. Also, there is a startup time
penalty for using a source code filter.
At this point Inline::Files is alpha software and use of it is
experimental. Inline's integration of this module is also fledgling
at the time being. One of things I plan to do with Inline::Files is
to get line number info so when an extension doesn't compile, the
error messages will point to the correct source file and line number.
My best advice is to use Inline::Files for testing (especially as
support for it improves), but use DATA for production and
distributed/CPAN code.
Strings
use Inline Java => <<'END';
/* Java code goes here ... */
END
# Perl code goes here ...
You also just specify the source code as a single string. A handy way
to write the string is to use Perl's "here document" style of
quoting. This is ok for small functions but can get unwieldy in the
large. On the other hand, the string variant probably has the least
startup penalty and all functions are bound at compile time.
If you wish to put the string into a scalar variable, please be aware
that the use statement is a compile time directive. As such, all the
variables it uses must also be set at compile time, before the 'use
Inline' statement. Here is one way to do it:
my $code;
BEGIN {
$code = <<END;
/* Java code goes here ... */
END
}
use Inline Java => $code;
# Perl code goes here ...
The bind() Function
An alternative to using the BEGIN block method is to specify the
source code at run time using the 'Inline->bind()' method. (This is
one of the interface exceptions mentioned above) The bind() method
takes the same arguments as 'use Inline ...'.
my $code = <<END;
/* Java code goes here ... */
END
Inline->bind(Java => $code);
You can think of bind() as a way to eval() code in other programming
languages.
Although bind() is a powerful feature, it is not recommended for use
in Inline based modules. In fact, it won't work at all for
installable modules. See instructions below for creating modules with
Inline.
Other Methods
The source code for Inline can also be specified as an external
filename, a reference to a subroutine that returns source code, or a
reference to an array that contains lines of source code. (Note that
if the external source file is in the current directory it must be
specified with a leading '.' - ie '.file.ext' instead of simply
'file.ext'.) These methods are less frequently used but may be useful
in some situations.
For instance, to load your C++ code from a file named the same as
your perl module with a swapped file extension, you can use:
use Inline CPP => (__FILE__ =~ s/\.pm$/.cpp/r);
Shorthand
If you are using the 'DATA' or 'file' methods described above and
there are no extra parameters, you can omit the keyword altogether.
For example:
use Inline 'Java';
# Perl code goes here ...
__DATA__
__Java__
/* Java code goes here ... */
or
use Inline::Files;
use Inline 'Java';
# Perl code goes here ...
__JAVA__
/* Java code goes here ... */
More about the DATA Section
If you are writing a module, you can also use the DATA section for POD
and AutoLoader subroutines. Just be sure to put them before the first
Inline marker. If you install the helper module Inline::Filters, you
can even use POD inside your Inline code. You just have to specify a
filter to strip it out.
You can also specify multiple Inline sections, possibly in different
programming languages. Here is another example:
# The module Foo.pm
package Foo;
use AutoLoader;
use Inline C;
use Inline C => DATA => filters => 'Strip_POD';
use Inline Python;
1;
__DATA__
sub marine {
# This is an autoloaded subroutine
}
=head1 External subroutines
=cut
__C__
/* First C section */
__C__
/* Second C section */
=head1 My C Function
Some POD doc.
=cut
__Python__
"""A Python Section"""
An important thing to remember is that you need to have one use Inline
Foo => 'DATA' for each __Foo__ marker, and they must be in the same
order. This allows you to apply different configuration options to each
section.
Configuration Options
Inline tries to do the right thing as often as possible. But sometimes
you may need to override the default actions. This is easy to do.
Simply list the Inline configuration options after the regular Inline
parameters. All configuration options are specified as (key, value)
pairs.
use Inline (C => 'DATA',
directory => './inline_dir',
libs => '-lfoo',
inc => '-I/foo/include',
prefix => 'XXX_',
warnings => 0,
);
You can also specify the configuration options on a separate Inline
call like this:
use Inline (C => Config =>
directory => './inline_dir',
libs => '-lfoo',
inc => '-I/foo/include',
prefix => 'XXX_',
warnings => 0,
);
use Inline C => <<'END_OF_C_CODE';
The special keyword 'Config' tells Inline that this is a
configuration-only call. No source code will be compiled or bound to
Perl.
If you want to specify global configuration options that don't apply to
a particular language, just leave the language out of the call. Like
this:
use Inline Config => warnings => 0;
The Config options are inherited and additive. You can use as many
Config calls as you want. And you can apply different options to
different code sections. When a source code section is passed in,
Inline will apply whichever options have been specified up to that
point. Here is a complex configuration example:
use Inline (Config =>
directory => './inline_dir',
);
use Inline (C => Config =>
libs => '-lglobal',
);
use Inline (C => 'DATA', # First C Section
libs => ['-llocal1', '-llocal2'],
);
use Inline (Config =>
warnings => 0,
);
use Inline (Python => 'DATA', # First Python Section
libs => '-lmypython1',
);
use Inline (C => 'DATA', # Second C Section
libs => [undef, '-llocal3'],
);
The first Config applies to all subsequent calls. The second Config
applies to all subsequent C sections (but not Python sections). In the
first C section, the external libraries global, local1 and local2 are
used. (Most options allow either string or array ref forms, and do the
right thing.) The Python section does not use the global library, but
does use the same DIRECTORY, and has warnings turned off. The second C
section only uses the local3 library. That's because a value of undef
resets the additive behavior.
The directory and warnings options are generic Inline options. All
other options are language specific. To find out what the C options do,
see Inline::C.
On and Off
If a particular config option has value options of 1 and 0, you can use
the 'enable' and 'disable' modifiers. In other words, this:
use Inline Config =>
force_build => 1,
clean_after_build => 0;
could be reworded as:
use Inline Config =>
enable => force_build =>
disable => clean_after_build;
Playing 'with' Others
Inline has a special configuration syntax that tells it to get more
configuration options from other Perl modules. Here is an example:
use Inline with => 'Event';
This tells Inline to load the module Event.pm and ask it for
configuration information. Since Event has a C API of its own, it can
pass Inline all of the information it needs to be able to use Event C
callbacks seamlessly.
That means that you don't need to specify the typemaps, shared
libraries, include files and other information required to get this to
work.
You can specify a single module or a list of them. Like:
use Inline with => qw(Event Foo Bar);
Currently, modules that works with Inline include Event, PDL, and those
that use Alien::Build.
In order to make your module work with Inline in this way, your module
needs to provide a class method called Inline that takes an Inline
language as a parameter (e.g. "C"), and returns a reference to a hash
with configuration information that is acceptable to the relevant ILSM.
For C, see C Configuration Options. E.g.:
my $confighashref = Event->Inline('C'); # only supports C in 1.21
# hashref contains keys INC, TYPEMAPS, MYEXTLIB, AUTO_INCLUDE, BOOT
If your module uses ExtUtils::Depends version 0.400 or higher, your
module only needs this:
package Module;
use autouse Module::Install::Files => qw(Inline);
Inline Shortcuts
Inline lets you set many configuration options from the command line.
These options are called 'shortcuts'. They can be very handy,
especially when you only want to set the options temporarily, for say,
debugging.
For instance, to get some general information about your Inline code in
the script Foo.pl, use the command:
perl -MInline=info Foo.pl
If you want to force your code to compile, even if its already done,
use:
perl -MInline=force Foo.pl
If you want to do both, use:
perl -MInline=info -MInline=force Foo.pl
or better yet:
perl -MInline=info,force Foo.pl
The Inline 'directory'
Inline needs a place to build your code and to install the results of
the build. It uses a single directory named '.Inline/' under normal
circumstances. If you create this directory in your home directory, the
current directory or in the directory where your program resides,
Inline will find and use it. You can also specify it in the environment
variable PERL_INLINE_DIRECTORY or directly in your program, by using
the directory keyword option. If Inline cannot find the directory in
any of these places it will create a '_Inline/' directory in either
your current directory or the directory where your script resides.
One of the key factors to using Inline successfully, is understanding
this directory. When developing code it is usually best to create this
directory (or let Inline do it) in your current directory. Remember
that there is nothing sacred about this directory except that it holds
your compiled code. Feel free to delete it at any time. Inline will
simply start from scratch and recompile your code on the next run. If
you have several programs that you want to force to recompile, just
delete your '.Inline/' directory.
It is probably best to have a separate '.Inline/' directory for each
project that you are working on. You may want to keep stable code in
the <.Inline/> in your home directory. On multi-user systems, each user
should have their own '.Inline/' directories. It could be a security
risk to put the directory in a shared place like /tmp/.
Debugging Inline Errors
All programmers make mistakes. When you make a mistake with Inline,
like writing bad C code, you'll get a big error report on your screen.
This report tells you where to look to do the debugging. Some languages
may also dump out the error messages generated from the build.
When Inline needs to build something it creates a subdirectory under
your DIRECTORY/build/ directory. This is where it writes all the
components it needs to build your extension. Things like XS files,
Makefiles and output log files.
If everything goes OK, Inline will delete this subdirectory. If there
is an error, Inline will leave the directory intact and print its
location. The idea is that you are supposed to go into that directory
and figure out what happened.
Read the doc for your particular Inline Language Support Module for
more information.
The 'config' Registry File
Inline keeps a cached file of all of the Inline Language Support
Module's meta data in a file called config. This file can be found in
your directory directory. If the file does not exist, Inline creates a
new one. It will search your system for any module beginning with
Inline::. It will then call that module's register() method to get
useful information for future invocations.
Whenever you add a new ILSM, you should delete this file so that Inline
will auto-discover your newly installed language module. (This should
no longer be necessary as of Inline-0.49.)
CONFIGURATION OPTIONS
This section lists all of the generic Inline configuration options. For
language specific configuration, see the doc for that language.
directory
The directory config option is the directory that Inline uses to both
build and install an extension.
Normally Inline will search in a bunch of known places for a
directory called '.Inline/'. Failing that, it will create a directory
called '_Inline/'
If you want to specify your own directory, use this configuration
option.
Note that you must create the directory directory yourself. Inline
will not do it for you.
name
You can use this option to set the name of your Inline extension
object module. For example:
use Inline C => 'DATA',
name => 'Foo::Bar';
would cause your C code to be compiled in to the object:
lib/auto/Foo/Bar/Bar.so
lib/auto/Foo/Bar/Bar.inl
(The .inl component contains dependency information to make sure the
source code is in sync with the executable)
If you don't use name, Inline will pick a name for you based on your
program name or package name. In this case, Inline will also enable
the autoname option which mangles in a small piece of the MD5
fingerprint into your object name, to make it unique.
autoname
This option is enabled whenever the name parameter is not specified.
To disable it say:
use Inline C => 'DATA',
disable => 'autoname';
autoname mangles in enough of the MD5 fingerprint to make your module
name unique. Objects created with autoname will never get replaced.
That also means they will never get cleaned up automatically.
autoname is very useful for small throw away scripts. For more
serious things, always use the name option.
version
Specifies the version number of the Inline extension object. It is
used only for modules, and it must match the global variable
$VERSION. Additionally, this option should used if (and only if) a
module is being set up to be installed permanently into the Perl
sitelib tree using Inline::MakeMaker (NOT used by Inline::Module).
Inline will croak if you use it otherwise.
The presence of the version parameter is the official way to let
Inline know that your code is an installable/installed module. Inline
will never generate an object in the temporary cache (_Inline/
directory) if version is set. It will also never try to recompile a
module that was installed into someone's Perl site tree.
So the basic rule is develop without version, and deliver with
version.
with
with can also be used as a configuration option instead of using the
special 'with' syntax. Do this if you want to use different sections
of Inline code with different modules. (Probably a very rare usage)
use Event;
use Inline C => DATA => with => 'Event';
Modules specified using the config form of with will not be
automatically required. You must use them yourself.
using
You can override modules that get used by ILSMs with the using
option. This is typically used to override the default parser for
Inline::C, but might be used by any ILSM for any purpose.
use Inline config => using => '::Parser::RecDescent';
use Inline C => '...';
This would tell Inline::C to use Inline::C::Parser::RecDescent.
global_load
This option is for compiled languages only. It tells Inline to tell
DynaLoader to load an object file in such a way that its symbols can
be dynamically resolved by other object files. May not work on all
platforms. See the global shortcut below.
untaint
You can use this option whenever you use Perl's -T switch, for taint
checking. This option tells Inline to blindly untaint all tainted
variables. (This is generally considered to be an appallingly
insecure thing to do, and not to be recommended - but the option is
there for you to use if you want. Please consider using something
other than Inline for scripts that need taint checking.) It also
turns on safemode by default. See the untaint shortcut below. You
will see warnings about blindly untainting fields in both %ENV and
Inline objects. If you want to silence these warnings, set the Config
option no_untaint_warn => 1. There can be some problems untainting
Inline scripts where older versions of Cwd, such as those that
shipped with early versions of perl-5.8 (and earlier), are installed.
Updating Cwd will probably solve these problems.
safemode
Perform extra safety checking, in an attempt to thwart malicious
code. This option cannot guarantee security, but it does turn on all
the currently implemented checks. (Currently, the only "currently
implemented check" is to ensure that the directory option has also
been used.)
There is a slight startup penalty by using safemode. Also, using
untaint automatically turns this option on. If you need your code to
start faster under -T (taint) checking, you'll need to turn this
option off manually. Only do this if you are not worried about
security risks. See the unsafe shortcut below.
force_build
Makes Inline build (compile) the source code every time the program
is run. The default is 0. See the force shortcut below.
build_noisy
Tells ILSMs that they should dump build messages to the terminal
rather than be silent about all the build details.
build_timers
Tells ILSMs to print timing information about how long each build
phase took. Usually requires Time::HiRes.
clean_after_build
Tells Inline to clean up the current build area if the build was
successful. Sometimes you want to disable this for debugging. Default
is 1. See the noclean shortcut below.
clean_build_area
Tells Inline to clean up the old build areas within the entire Inline
directory. Default is 0. See the clean shortcut below.
print_info
Tells Inline to print various information about the source code.
Default is 0. See the info shortcut below.
print_version
Tells Inline to print version info about itself. Default is 0. See
the version shortcut below.
reportbug
Puts Inline into 'reportbug' mode, which is what you want if you
desire to report a bug.
rewrite_config_file
Default is 0, but setting rewrite_config_file => 1 will mean that the
existing configuration file in the Inline directory will be
overwritten. (This is useful if the existing config file is not up to
date as regards supported languages.)
warnings
This option tells Inline whether to print certain warnings. Default
is 1.
INLINE CONFIGURATION SHORTCUTS
This is a list of all the shortcut configuration options currently
available for Inline. Specify them from the command line when running
Inline scripts.
perl -MInline=noclean inline_script.pl
or
perl -MInline=info,force,noclean inline_script.pl
You can specify multiple shortcuts separated by commas. They are not
case sensitive. You can also specify shortcuts inside the Inline
program like this:
use Inline 'info', 'force', 'noclean';
NOTE: If a 'use Inline' statement is used to set shortcuts, it can not
be used for additional purposes.
clean
Tells Inline to remove any build directories that may be lying around
in your build area. Normally these directories get removed
immediately after a successful build. Exceptions are when the build
fails, or when you use the noclean or reportbug options.
force
Forces the code to be recompiled, even if everything is up to date.
global
Turns on the global_load option.
info
This is a very useful option when you want to know what's going on
under the hood. It tells Inline to print helpful information to
STDERR. Among the things that get printed is a list of which Inline
functions were successfully bound to Perl.
noclean
Tells Inline to leave the build files after compiling.
noisy
Use the build_noisy option to print messages during a build.
reportbug
Puts Inline into reportbug mode, which does special processing when
you want to report a bug. reportbug also automatically forces a
build, and doesn't clean up afterwards. This is so that you can tar
and mail the build directory to me. reportbug will print exact
instructions on what to do. Please read and follow them carefully.
NOTE: reportbug informs you to use the tar command. If your system
does not have tar, please use the equivalent zip command.
safe
Turns safemode on. untaint will turn this on automatically. While
this mode performs extra security checking, it does not guarantee
safety.
site_install
This parameter used to be used for creating installable Inline
modules. It has been removed from Inline altogether and replaced with
a much simpler and more powerful mechanism, Inline::MakeMaker. See
the section below on how to create modules with Inline.
_testing
Used internally by Ct09parser.t and Ct10callback.t(in the Inline::C
test suite). Setting this option with Inline::C will mean that files
named parser_id and void_test are created in the ./Inline_test
directory, creating that directory if it doesn't already exist. The
files (but not the ./Inline_test directory) are cleaned up by calling
Inline::C::_testing_cleanup(). Also used by t/06rewrite_config.t to
trigger a warning.
timers
Turn on build_timers to get extra diagnostic info about builds.
unsafe
Turns safemode off. Use this in combination with untaint for slightly
faster startup time under -T. Only use this if you are sure the
environment is safe.
untaint
Turn the untaint option on. Used with -T switch. In terms of secure
practices, this is definitely not a recommended way of dealing with
taint checking, but it's the only option currently available with
Inline. Use it at your own risk.
version
Tells Inline to report its release version.
WRITING MODULES WITH INLINE
The current preferred way to author CPAN modules with Inline is to use
Inline::Module (distributed separately). Inline ships with
Inline::MakeMaker, which helps you set up a Makefile.PL that invokes
Inline at install time to compile all the code before it gets
installed, but the resulting module still depends on Inline and the
language support module like Inline::C. In order to avoid this
dependency, what you really want to do is convert your distribution to
plain XS before uploading it to CPAN. Inline::Module fills that role,
and also integrates well with more modern authoring tools.
See Inline::Module for details on that approach, or continue reading
below for the older Inline::MakeMaker technique.
Let's say that you wanted to write a module called Math::Simple. Start
by using the following command:
h2xs -PAXn Math::Simple
This will generate a bunch of files that form a skeleton of what you
need for a distributable module. (Read the h2xs manpage to find out
what the options do) Next, modify the Simple.pm file to look like this:
package Math::Simple;
$VERSION = '1.23';
use base 'Exporter';
@EXPORT_OK = qw(add subtract);
use strict;
use Inline C => 'DATA',
version => '1.23',
name => 'Math::Simple';
# The following Inline->init() call is optional - see below for more info.
#Inline->init();
1;
__DATA__
=pod
=cut
__C__
int add(int x, int y) {
return x + y;
}
int subtract(int x, int y) {
return x - y;
}
The important things to note here are that you must specify a name and
version parameter. The name must match your module's package name. The
version parameter must match your module's $VERSION variable and they
must be considered valid by version::parse.
NOTE: These are Inline's sanity checks to make sure you know what
you're doing before uploading your code to CPAN. They insure that once
the module has been installed on someone's system, the module would not
get automatically recompiled for any reason. This makes Inline based
modules work in exactly the same manner as XS based ones.
Finally, you need to modify the Makefile.PL. Simply change:
use ExtUtils::MakeMaker;
to
use Inline::MakeMaker;
And, in order that the module build work correctly in the cpan shell,
add the following directive to the Makefile.PL's WriteMakefile():
CONFIGURE_REQUIRES => {
'Inline::MakeMaker' => 0.45,
'ExtUtils::MakeMaker' => 6.52,
},
This CONFIGURE_REQUIRES directive ensures that the cpan shell will
install Inline on the user's machine (if it's not already present)
before building your Inline-based module. Specifying of
"ExtUtils::MakeMaker => 6.52," is optional, and can be omitted if you
like. It ensures only that some harmless warnings relating to the
CONFIGURE_REQUIRES directive won't be emitted during the building of
the module. It also means, of course, that ExtUtils::Makemaker will
first be updated on the user's machine unless the user already has
version 6.52 or later.
If the "Inline->init();" is not done then, having installed
Math::Simple, a warning that "One or more DATA sections were not
processed by Inline" will appear when (and only when) Math::Simple is
loaded by a "require call. It's a harmless warning - and if you're
prepared to live with it, then there's no need to make the
"Inline->init();" call.
When the person installing Math::Simple does a "make", the generated
Makefile will invoke Inline in such a way that the C code will be
compiled and the executable code will be placed into the ./blib
directory. Then when a "make install" is done, the module will be
copied into the appropriate Perl sitelib directory (which is where an
installed module should go).
Now all you need to do is:
perl Makefile.PL
make dist
That will generate the file Math-Simple-0.20.tar.gz which is a
distributable package. (It will also generate some harmless warnings in
relation to CONFIGURE_REQUIRES unless the version of your
ExtUtils::MakeMaker is 6.52 or later.) That's all there is to it.
IMPORTANT NOTE: Although the above steps will produce a workable
module, you still have a few more responsibilities as a budding new
CPAN author. You need to write lots of documentation and write lots of
tests. Take a look at some of the better CPAN modules for ideas on
creating a killer test harness. Actually, don't listen to me, go read
these:
* perldoc perlnewmod
* http://www.cpan.org/modules/04pause.html
* http://www.cpan.org/modules/00modlist.long.html
HOW INLINE WORKS
In reality, Inline just automates everything you would need to do if
you were going to do it by hand (using XS, etc).
Inline performs the following steps:
* Receive the Source Code
Inline gets the source code from your script or module with a
statements like the following:
use Inline C => "Source-Code";
or
use Inline;
bind Inline C => "Source-Code";
where C is the programming language of the source code, and Source-
Code is a string, a file name, an array reference, or the special
'DATA' keyword.
Since Inline is coded in a "use" statement, everything is done during
Perl's compile time. If anything needs to be done that will affect
the Source- Code, it needs to be done in a BEGIN block that is before
the "use Inline ..." statement. If you really need to specify code to
Inline at runtime, you can use the bind() method.
Source code that is stowed in the 'DATA' section of your code, is
read in by an INIT subroutine in Inline. That's because the DATA
filehandle is not available at compile time.
* Check if the Source Code has been Built
Inline only needs to build the source code if it has not yet been
built. It accomplishes this seemingly magical task in an extremely
simple and straightforward manner. It runs the source text through
the Digest::MD5 module to produce a 128-bit "fingerprint" which is
virtually unique. The fingerprint along with a bunch of other
contingency information is stored in a .inl file that sits next to
your executable object. For instance, the C code from a script called
example.pl might create these files:
example_pl_3a9a.so
example_pl_3a9a.inl
If all the contingency information matches the values stored in the
.inl file, then proceed to step 8. (No compilation is necessary)
* Find a Place to Build and Install
At this point Inline knows it needs to build the source code. The
first thing to figure out is where to create the great big mess
associated with compilation, and where to put the object when it's
done.
By default Inline will try to build and install under the first place
that meets one of the following conditions:
1. The DIRECTORY= config option; if specified
2. The PERL_INLINE_DIRECTORY environment variable; if set
3. .Inline/ (in current directory); if exists and $PWD != $HOME
4. bin.Inline (in directory of your script); if exists
5. ~/.Inline/ - if exists
6. ./_Inline/ - if exists
7. bin/_Inline - if exists
8. Create ./_Inline/ - if possible
9. Create bin/_Inline/ - if possible
Failing that, Inline will croak. This is rare and easily remedied by
just making a directory that Inline will use.
If the PERL_INSTALL_ROOT Environment Variable has been set, you will
need to make special provision for that if the 'make install' phase
of your Inline scripts are to succeed.
If the module option is being compiled for permanent installation,
then Inline will only use ./_Inline/ to build in, and the
$Config{installsitearch} directory to install the executable in. This
action is caused by Inline::MakeMaker, and is intended to be used in
modules that are to be distributed on the CPAN, so that they get
installed in the proper place.
* Parse the Source for Semantic Cues
Inline::C uses the module Parse::RecDescent to parse through your
chunks of C source code and look for things that it can create
run-time bindings to. In C it looks for all of the function
definitions and breaks them down into names and data types. These
elements are used to correctly bind the C function to a Perl
subroutine. Other Inline languages like Python and Java actually use
the python and javac modules to parse the Inline code.
* Create the Build Environment
Now Inline can take all of the gathered information and create an
environment to build your source code into an executable. Without
going into all the details, it just creates the appropriate
directories, creates the appropriate source files including an XS
file (for C) and a Makefile.PL.
* Build the Code and Install the Executable
The planets are in alignment. Now for the easy part. Inline just does
what you would do to install a module. "`perl Makefile.PL && make &&
make test && make install>". If something goes awry, Inline will
croak with a message indicating where to look for more info.
* Tidy Up
By default, Inline will remove all of the mess created by the build
process, assuming that everything worked. If the build fails, Inline
will leave everything intact, so that you can debug your errors.
Setting the noclean shortcut option will also stop Inline from
cleaning up.
* DynaLoad the Executable
For C (and C++), Inline uses the DynaLoader::bootstrap method to pull
your external module into Perl space. Now you can call all of your
external functions like Perl subroutines.
Other languages like Python and Java, provide their own loaders.
SEE ALSO
For information about using Inline with C see Inline::C.
For sample programs using Inline with C see Inline::C-Cookbook.
For "Formerly Answered Questions" about Inline, see Inline-FAQ.
For information on supported languages and platforms see
Inline-Support.
For information on writing your own Inline Language Support Module, see
Inline-API.
Inline's mailing list is inline@perl.org
To subscribe, send email to inline-subscribe@perl.org
BUGS AND DEFICIENCIES
When reporting a bug, please do the following:
* Put "use Inline 'reportbug';" at the top of your code, or use the
command line option "perl -MInline=reportbug ...".
* Run your code.
* Follow the printed directions.
AUTHOR
Ingy döt Net <ingy@cpan.org>
Sisyphus <sisyphus@cpan.org> fixed some bugs and is current
co-maintainer.
COPYRIGHT
* Copyright 2000-2019. Ingy döt Net.
* Copyright 2008, 2010-2014. Sisyphus.
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
See http://www.perl.com/perl/misc/Artistic.html